A key to choose subspace size in implicitly restarted Arnoldi method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicitly restarted Arnoldi with purification for the shift-invert transformation

The need to determine a few eigenvalues of a large sparse generalised eigenvalue problem Ax = λBx with positive semidefinite B arises in many physical situations, for example, in a stability analysis of the discretised Navier-Stokes equation. A common technique is to apply Arnoldi’s method to the shift-invert transformation, but this can suffer from numerical instabilities as is illustrated by ...

متن کامل

Implicitly Restarted Arnoldi/lanczos Methods for Large Scale Eigenvalue Calculations

This report provides an introductory overview of the numerical solution of large scale algebraic eigenvalue problems. The main focus is on a class of methods called Krylov subspace projection methods. The Lanczos method is the premier member of this class and the Arnoldi method is a generalization to the nonsymmetric case. A recently developed and very promising variant of the Arnoldi/Lanczos s...

متن کامل

Deflation Techniques for an Implicitly Restarted Arnoldi Iteration

A deeation procedure is introduced that is designed to improve the convergence of an implicitly restarted Arnoldi iteration for computing a few eigenvalues of a large matrix. As the iteration progresses the Ritz value approximations of the eigenvalues of A converge at diierent rates. A numerically stable scheme is introduced that implicitly deeates the converged approximations from the iteratio...

متن کامل

A reflection on the implicitly restarted Arnoldi method for computing eigenvalues near a vertical line

In this article, we will study the link between a method for computing eigenvalues closest to the imaginary axis and the implicitly restarted Arnoldi method. The extension to eigenvalues closest to a vertical line is straightforward, by incorporating a shift. Without loss of generality we will restrict ourselves here to the imaginary axis. In a recent publication, Meerbergen and Spence discusse...

متن کامل

A Refined Second-order Arnoldi (RSOAR) Method for the Quadratic Eigenvalue Problem and Implicitly Restarted Algorithms

To implicitly restart the second-order Arnoldi (SOAR) method proposed by Bai and Su for the quadratic eigenvalue problem (QEP), it appears that the SOAR procedure must be replaced by a modified SOAR (MSOAR) one. However, implicit restarts fails to work provided that deflation takes place in the MSOAR procedure. In this paper, we first propose a Refined MSOAR (abbreviated as RSOAR) method that i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Algorithms

سال: 2015

ISSN: 1017-1398,1572-9265

DOI: 10.1007/s11075-014-9954-5